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Abstract

Commenting the 11-year sunspot cycle, Wolf (1859, MNRAS 19, 85-86) conjectured that “the variations of spot-
frequency depend on the influences of Venus, Earth, Jupiter, and Saturn”. The high synchronization of our planetary
system is already nicely revealed by the fact that the ratios of the planetary orbital radii are closely related to each
other through a scaling-mirror symmetry equation (Bank and Scafetta, Front. Astron. Space Sci. 8, 758184, 2022).
Reviewing the many planetary harmonics and the orbital invariant inequalities that characterize the planetary
motions of the solar system from the monthly to the millennial time scales, we show that they are not randomly
distributed but clearly tend to cluster around some specific values that also match those of the main solar activity
cycles. In some cases, planetary models have even been able to predict the time-phase of the solar oscillations including
the Schwabe 11-year sunspot cycle. We also stress that solar models based on the hypothesis that solar activity is
regulated by its internal dynamics alone have never been able to reproduce the variety of the observed cycles. Although
planetary tidal forces are weak, we review a number of mechanisms that could explain how the solar structure and
the solar dynamo could get tuned to the planetary motions. In particular, we discuss how the effects of the weak
tidal forces could be significantly amplified in the solar core by an induced increase in the H-burning. Mechanisms
modulating the electromagnetic and gravitational large-scale structure of the planetary system are also discussed.
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1 Introduction
Since antiquity, the movements of the planets of the so-
lar system have attracted the attention of astronomers
and philosophers such as Pythagoras and Kepler be-
cause the orbital periods appeared to be related to
each other by simple harmonic proportions, resonances,
and/or commensurabilities (Haar, 1948; Stephenson,
1974). Such a philosophical concept is known as the
“Music of the Spheres” or the “Harmony of the Worlds”
(Godwin, 1992; Scafetta, 2014a). This property is rather
common for many orbital systems (Agol et al., 2021; As-
chwanden, 2018; Moons and Morbidelli, 1995; Scafetta,
2014a). Bank and Scafetta (2022) improved the Geddes
and King-Hele equations describing the mirror symme-
tries among the orbital radii of the planets (Geddes and
King-Hele, 1983) and discovered their ratios obey the
following scaling-mirror symmetry relation
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where aplanet are the semi-major axes of the orbits of
the relative planets: Eris (Er), Pluto (Pl), Neptune
(Ne), Uranus (Ur), Saturn (Sa), Jupiter (Ju), Mars (Ma),
Earth (Ea), Venus (Ve), Mercury (Me), Vulcanoid aster-
oid belt (Vu), and the scattered zone surrounding the
Sun (Sz). See Figure 1. The ratio 9/8 is, musically
speaking, a whole tone known as the Pythagorean epog-
doon. The deviations of Eq. 1 from the actual orbital
planetary ratios are within 1%.
Another intriguing aspect regarding the synchroniza-

tion of the solar system is the fact that many plane-
tary harmonics are found spectrally coherent with the
solar activity cycles (e.g.: Scafetta, 2012a, 2020, and
many others). The precise physical origin of solar cycles
is still poorly known and dynamo models are debated,
but recent literature has strengthened the hypothesis
of a correlation with planetary harmonics. Actually,
a few years after the discovery of the 11-year sunspot
cycle, Wolf (1859) himself conjectured that “the varia-
tions of spot-frequency depend on the influences of Venus,
Earth, Jupiter, and Saturn”. Dicke (1978) noted that
the sunspot cycle shows no statistical indication of being
randomly generated but rather of being synchronized by
a chronometer hidden deep in the Sun. Solar activity
is characterized by several cycles like the Schwabe 11-
year sunspot cycle (Schwabe, 1843), the Hale solar mag-
netic 22-year cycle (Hale, 1908), the Gleissberg cycle
(∼85 years), the Jose cycle (∼178 years), the Suess-de
Vries cycle (∼208 years), the Eddy cycle (∼1000 years),
and the Bray-Hallstatt cycle (∼2300 years) (Abreu et
al., 2012; McCracken et al., 2001, 2013; Scafetta, 2016).
Shorter cycles are easily detected in total solar irradi-
ance (TSI) and sunspot records, while the longer ones
are detected in long-term geophysical records like the

cosmogenic radionuclide ones (14C and 10Be) and in cli-
mate records (Neff et al., 2001; Steinhilber et al., 2009).
Planetary cycles have also been found in aurora records
(Scafetta, 2012c; Scafetta and Willson, 2013a).
Due to the evident high synchronization of planetary

motions, it is worthwhile investigating the possibility
that orbital frequencies could tune solar variability as
well. However, although Jupiter appears to play the
main role in organizing the solar system (Bank and
Scafetta, 2022), its orbital period (∼11.86 years) is too
long to fit the Schwabe 11-year solar cycle. Thus, any
possible planetary mechanism able to create this solar
modulation must involve a combination of more plan-
ets. We will see that the only frequencies that could be
involved in the process are the orbital periods, the syn-
odical periods, and their beats and harmonics.
In the following sections, we review the planetary the-

ory of solar variability and show how it is today sup-
ported by many empirical and theoretical evidences at
multiple timescales. We show that appropriate plane-
tary harmonic models correlate with the 11-year solar
cycle, the secular and millennial cycles, as well as with
several other major oscillations observed in solar activ-
ity, and even with the occasional occurrences of solar
flares. The physics behind these results is not yet fully
understood, but a number of working hypotheses will be
herein briefly discussed.

2 The solar dynamo and its open
issues

The hypothesis we wish to investigate is whether the
solar activity could be synchronized by harmonic plan-
etary forcings. In principle, this could be possible be-
cause the solar structure itself is an oscillator. The so-
lar cyclical magnetic activity can be explained as the
result of a dynamo operating in the convective enve-
lope or at the interface with the inner radiative region,
where the rotational energy is converted into magnetic
energy. Under certain conditions, in particular if the in-
ternal noise is sufficiently weak relative to the external
forcing, an oscillating system could synchronize with a
weak external periodic force, as first noted by Huygens
in the 17th century (Pikovsky et al., 2001).
A comprehensive review of solar dynamo models is

provided by Charbonneau (2020). In the most common
α-Ω models, the magnetic field is generated by the com-
bined effect of differential rotation and cyclonic convec-
tion. The mechanism starts with an initially poloidal
magnetic field that is azimuthally stretched by the dif-
ferential rotation of the convective envelope, especially
at the bottom of the convective region (tachocline) where
the angular velocity gradient is most steep. The con-
tinuous winding of the poloidal field lines (Ω mecha-
nism) produces a magnetic toroidal field that accumu-
lates in the boundary overshooting region. When the
toroidal magnetic field and its magnetic pressure get
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Figure 1: The following scaling-mirror symmetry relation among the semi-major axes of the orbits of the planets
and asteroid belts of the solar system. (Bank and Scafetta, 2022).

strong enough, the toroidal flux ropes become buoyantly
unstable and start rising through the convective enve-
lope where they undergo helical twisting by the Coriolis
forces (αmechanism) (Parker, 1955). When the twisted
field lines emerge at the photosphere, they appear as
bipolar magnetic regions (BMRs), that roughly coincide
with the large sunspot pairs, also characterized by a
dipole moment that is systematically tilted with respect
to the E–W direction of the toroidal field. The turbulent
decay of BMRs finally releases a N-S oriented fraction of
the dipole moment that allows the formation of a global
dipole field, characterized by a polarity reversal as re-
quired by the observations (Babcock–Leighton mecha-
nism).
However, magneto-hydrodynamic simulations sug-

gest that purely interface dynamos cannot be easily cal-
ibrated to solar observations, while flux-transport dy-
namos (based on the meridional circulation) are able to
better simulate the 11-year solar cycle when the model
parameters are calibrated to minimize the difference
between observed and simulated time–latitude BMR
patterns (Charbonneau, 2020; Dikpati and Gilman,
2007). Cole and Bushby (2014) showed that by chang-
ing the parameters of the MHD α-Ω dynamo models it
is possible to obtain transitions from periodic to chaotic
states via multiple periodic solutions. Macario-Rojas et
al. (2018) obtained a reference Schwabe cycle of 10.87
years, which was also empirically found by Scafetta
(2012a) by analyzing the sunspot record. This oscilla-
tion will be discussed later in the Jupiter-Saturn model
of Sections 4.2 and 6.
Full MHD dynamo models are not yet available and

several crucial questions are still open such as the
stochastic and nonlinear nature of the dynamo, the for-
mation of flux ropes and sunspots, the regeneration

of the poloidal field, the modulation of the amplitude
and period of the solar cycles, how less massive fully
convective stars with no tachocline may still show the
same relationship between the rotation and magnetic
activity, the role of meridional circulation, the origin of
Maunder-type Grand Minima, the presence of very low-
frequency Rieger-type periodicities probably connected
with the presence of magneto-Rossby waves in the solar
dynamo layer below the convection zone, and other is-
sues (Zaqarashvili et al., 2010, 2021; Gurgenashvili et
al., 2022).

3 The solar wobbling and its har-
monic organization

The complex dynamics of the planetary system can be
described by a general harmonic model. Any general
function of the orbits of the planets – such as their
barycentric distance, speed, angular momentum, etc. –
must share a common set of frequencies with those of
the solar motion (e.g.: Jose, 1965; Bucha et al., 1985;
Cionco and Pavlov, 2018; Scafetta, 2010). Instead,
the amplitudes and phases associated with each con-
stituent harmonic depend on the specific chosen func-
tion.
Figure 2 (A and B) shows the positions and the veloc-

ities of the wobbling Sun with respect to the barycen-
ter of the planetary system from BC 8002, to AD 9001
(100-day steps) calculated using the JPL’s HORIZONS
Ephemeris system (Scafetta, 2010, 2014a).
We can analyze the main orbital frequencies of the

planetary system by performing, for example, the har-
monic analysis of the solar velocity alone. Its peri-
odograms were obtained with the Fourier analysis (red)
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Figure 2: [A] The motion the wobbling Sun from 1944 to 2020 [B] The distance and the speed of the Sun relative
to the barycenter of the solar system from 1800 to 2020. [C] Periodogram (red) and the maximum entropy method
spectrum (blue) of the speed of the Sun from BC 8002-Dec-12, to AD 9001-Apr-24. [D] Comparison between the
frequencies observed in [C] in the range 3 to 200 years (red) and the frequencies predicted by the harmonic model
of Eq. 3 (blue). (cf. Scafetta, 2014a).

and the maximum entropy method (blue) (Press et al.,
1997) and are shown in Figure 2C.

Several spectral peaks can be recognized: the ∼1.092
year period of the Earth-Jupiter conjunctions; the
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Planet days years
Mercury 87.969 0.241
Venus 224.701 0.615
Earth 365.256 1
Mars 686.980 1.881
Jupiter 4332.589 11.862
Saturn 10759.22 29.457
Uranus 30685.4 84.011
Neptune 60189.0 164.79

Table 1: Sidereal orbital periods of the planets of the
solar system. From the Planetary Fact Sheet - Metric
https://nssdc.gsfc.nasa.gov/planetary/factsheet/.

∼9.93 and ∼19.86 year periods of the Jupiter-Saturn
spring (half synodic) and synodic cycles, respectively;
the∼11.86,∼29.5,∼84 and∼165 years of the orbital pe-
riods of Jupiter, Saturn, Uranus and Neptune, respec-
tively; the ∼60 year cycle of the Trigon of Great Con-
junctions between Jupiter and Saturn; the periods cor-
responding to the synodic cycles between Jupiter and
Neptune (∼12.8 year), Jupiter andUranus (∼13.8 year),
Saturn and Neptune (∼35.8 year), Saturn and Uranus
(∼45.3) and Uranus and Neptune (∼171.4 year), as well
as their spring periods.
The synodic period is defined as

P12 =
1

f12
=

∣∣∣∣ 1

P1
− 1

P2

∣∣∣∣−1 , (2)

where P1 and P2 are the orbital periods of two planets.
Additional spectral peaks at∼200-220,∼571,∼928 and
∼4200 years are also observed. The spring period is the
half of P12. The observed orbital periods are listed in
Table 1.
Some of the prominent frequencies in the power spec-

tra appear clustered around well-known solar cycles
such as in the ranges 42-48 years, 54-70 years, 82-100
years (Gleissberg cycle), 155-185 (Jose cycle), and 190-
240 years (Suess-de Vries cycle) (e.g.: Ogurtsov et al.,
2002; Scafetta and Willson, 2013a). The sub-annual
planetary harmonics and their spectral coherence with
satellite total solar irradiance records will be discussed
in Section 5.
The important result is that the several spectral

peaks observed in the solar motion are not randomly
distributed but are approximately reproduced using the
following simple empirical harmonic formula

pi =
178.38

i
yr, i = 1, 2, 3, . . . , (3)

where 178 years corresponds to the period that Jose
(1965) found both in the solar orbital motion and in the
sunspot records (cf.: Jakubcová and Pick, 1986; Charvá-
tová and Hejda, 2014). A comparison between the ob-
served frequencies and those predicted by the harmonic
model of Eq. 3 is shown in Figure 2D, where a strong
coincidence is observed. Eq. 3 suggests that the solar

planetary system is highly self-organized and synchro-
nized.

4 The Schwabe 11-year solar cy-
cle

Wolf (1859) himself proposed that the∼11-year sunspot
cycle could be produced by the combined orbital motions
of Venus, Earth, Jupiter and Saturn. In the follow-
ing, we discuss two possible and complementary solar-
planetary models made with the orbital periods of these
four planets.

4.1 The Venus-Earth-Jupiter model
The first model relates the 11-year solar cycle with
the relative orbital configurations of Venus, Earth and
Jupiter, which was first proposed by Bendandi (1931) as
recently reminded by Battistini (2011). Later, Bollinger
(1952), Hung (2007) and others (e.g.: Scafetta, 2012c;
Tattersall, 2013; Wilson, 2013; Stefani et al., 2016,
2019, 2021) developed more evolved models.
This model is justified by the consideration that

Venus, Earth and Jupiter are the threemajor tidal plan-
ets (Scafetta, 2012b). Their alignments repeat every:

1

fV EJ
= PV EJ =

(
3

PV
− 5

PE
+

2

PJ

)−1
= 22.14 yr (4)

where PV = 224.701 days, PE = 365.256 days and PJ =
4332.589 days are the sidereal orbital periods of Venus,
Earth and Jupiter, respectively.
The calculated 22.14-year period is very close to the
∼22-year Hale solar magnetic cycle. Since the Earth–
Venus–Sun–Jupiter and Sun–Venus–Earth–Jupiter
configurations present equivalent tidal potentials, the
tidal cycle would have a recurrence of 11.07 years. This
period is very close to the average solar cycle length
observed since 1750 (Hung, 2007; Scafetta, 2012a;
Stefani et al., 2016).
Vos et al. (2004) found evidence for a stable Schwabe

cycle with a dominant 11.04-year period over a 1000-
year interval which is very close to the above 11.07 pe-
riodicity, as suggested by Stefani et al. (2020a). How-
ever, the Jupiter-Saturn model also reproduces a simi-
lar Schwabe cycle (see Sections 4.2 and 6).
Eq. 4 is an example of “orbital invariant inequality”

(Scafetta et al., 2016; Scafetta, 2020). Section 7 explains
their mathematical property of being simultaneously
and coherently seen by any region of a differentially ro-
tating system like the Sun. This property should favor
the synchronization of the internal solar dynamics with
external forces varying with those specific frequencies.
Eq. 4 can be rewritten in a vectorial formalism as

(3,−5, 2) = 3(1,−1, 0)− 2(0, 1,−1). (5)

5
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Each vector can be interpreted a frequency where the
order of its components correspond to the arbitrary
assumed order of the planets, in this case: (Venus,
Earth, Jupiter). Thus, (3,−5, 2) ≡ 3/PV − 5/PE +
2/PJ , 3(1,−1, 0) ≡ 3(1/PV − 1/PE) and −2(0, 1,−1) ≡
−2(1/PE − 1/PJ).
We observe that (1,−1, 0) indicates the frequency

of the synodic cycle between Venus and Earth and
(0, 1,−1) indicates the frequency of the synodic cycle
between Earth and Jupiter (Eq. 2). Thus, the vector
(3,−5, 2) indicates the frequency of the beat created by
the third harmonic of the synodic cycle between Venus
and Earth and the second harmonic of the synodic cycle
between Earth and Jupiter.
Eq. 5 also means that the Schwabe sunspot cycle can

be simulated by the function:

f(t) = cos

(
2π · 2 · 3 t− tV E

PV E

)
+ cos

(
2π · 2 · 2 t− tEJ

PEJ

)
,

(6)
where tV E = 2002.8327 is the epoch of a Venus-Earth
conjunction whose period is PV E = 1.59867 years; and
tEJ = 2003.0887 is the epoch of an Earth-Jupiter con-
junction whose period is PEJ = 1.09207 years. The
11.07-year beat is obtained by doubling the synodic fre-
quencies given in Eq. 5.
Figure 3A shows that the three-planet model of Eq. 6

(red) generates a beat pattern of 11.07 years reasonably
in phase with the sunspot cycle (blue). More precisely,
the maxima of the solar cycles tend to occur when the
perturbing forcing produced by the beat is stronger, that
is when the spring tides of the planets can interfere con-
structively somewhere in the solar structure.
Hung (2007) and Scafetta (2012a) developed the

three-planet model by introducing a three-planetary
alignment index. In the case of two planets, the align-
ment index Iij between planet i and planet j is defined
as:

Iij = | cos(Θij)|, (7)

where Θij is the angle between the positions of the two
planets relative to the solar center.
Eq. 7 indicates that when the two planets are aligned

(Θij = 0 or Θij = π), the alignment index has the largest
value because these two positions imply a spring-tide
configuration. Instead, when Θij = π/2, the index has
the lowest value because at right angles – correspond-
ing to a neap-tide configuration – the tides of the two
planets tend to cancel each other.
In the case of the Venus-Earth-Jupiter system, there

are three correspondent alignment indexes:

IV = | cos(ΘV E)|+ | cos(ΘV J)| (8)
IE = | cos(ΘEV )|+ | cos(ΘEJ)| (9)
IJ = | cos(ΘJV )|+ | cos(ΘJE)|. (10)

Then, the combined alignment index IV EJ for the three
planets could be defined as:

IV EJ = smallest among (IV , IE , IJ), (11)

which ranges between 0 and 2.
Figure 3B shows (in red) that the number of the most

aligned days of Venus, Earth and Jupiter – estimated
by Eq. 11 – presents an 11.07-year cycle. These cy-
cles are well correlated, both in phase and frequency,
with the ∼11-year sunspot cycle. Scafetta (2012a) also
showed that an 11.08-year recurrence exists also in the
amplitude and direction (latitude and longitude com-
ponents) of the solar jerk-shock vector, which is the
time-derivative of the acceleration vector. For addi-
tional details see Hung (2007), Scafetta (2012a), Sal-
vador (2013), Wilson (2013) and Tattersall (2013).
A limitation of the Venus-Earth-Jupiter model is that

it cannot explain the secular variability of the sunspot
cycle which alternates prolonged low and high activity
periods such as, for example, the Maunder grand so-
lar minimum between 1645 and 1715, when very few
sunspots were observed (cf. Smythe and Eddy, 1977).
However, this problem could be solved by the Jupiter-
Saturn model (Scafetta, 2012a) discussed below and, in
general, by taking into account also the other planets
(Scafetta, 2020; Stefani et al., 2021), as discussed in Sec-
tions 6 and 7.
The 11.07-year cycle has also been extensively stud-

ied by Stefani et al. (2016); Stefani (2018); Stefani et al.
(2019, 2020b, 2021) where it is claimed to be the funda-
mental periodicity synchronizing the solar dynamo.

4.2 The Jupiter-Saturn model
The second model assumes that the Schwabe sunspot
cycle is generated by the combined effects of the plan-
etary motions of Jupiter and Saturn. The two plan-
ets generate two main tidal oscillations associated with
the orbit of Jupiter (11.86-year period) – which is char-
acterized by a relatively large eccentricity (e = 0.049)
– and the spring tidal oscillation generated by Jupiter
and Saturn (9.93-year period) (Brown, 1900; Scafetta,
2012c). In this case, the Schwabe sunspot cycle could
emerge from the synchronization of the two tides with
periods of 9.93 and 11.86 years, whose average is about
11 years.
The Jupiter-Saturn model is supported by a large

number of evidences. For example, Scafetta (2012a,b)
showed that the sunspot cycle length – i.e. the time be-
tween two consecutive sunspot minima – is bi-modally
distributed, being always characterized by two peaks at
periods smaller and larger than 11 years. This suggests
that there are two dynamical attractors at the periods
of about 10 and 12 years forcing the sunspot cycle length
to fall either between 10 and 11 years or between 11 and
12 years. Sunspot cycles with a length very close to 11
years are actually absent. In addition, Figures 3C and
D show the periodograms of the monthly sunspot record
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Figure 3: [A] The plot of Eq. 6 (red) versus the sunspot number record (blue). [B, Top] The sunspot number
record (black) versus the alignment index IV EJ > 66%. [B, Bottom] The sunspot number record (black) against
the number of days of most alignment (IV EJ > 95%) (red). [C and D] Power spectra of the Schwabe sunspot cy-
cle using the Maximum Entropy Method (MEM) and the periodogram (MTM) (Press et al., 1997). (Data from:
https://www.sidc.be/silso/datafiles).

since 1749. The spectral analysis of this long record re-
veals the presence of a broad major peak at about 10.87
years obtained by some solar dynamo models (Macario-
Rojas et al., 2018) which is surrounded by two minor
peaks at 9.93 and 11.86 years that exactly correspond
with the two main tides of the Jupiter-Saturn system.
In Section 6 we will show that the combination of

these three harmonics produces amultidecadal, secular
and millennial variability that is rather well correlated
with the long time-scale solar variability.

5 Solar cycles shorter than the
Schwabe 11-year solar cycle

On small time scales, Bigg (1967) found an influence of
Mercury on sunspots. Indeed, in addition to Jupiter,
Mercury can also induce relatively large tidal cycles on
the Sun because its orbit has a large eccentricity (e =
0.206) (Scafetta, 2012a).
Rapid oscillations in the solar activity can be op-

timally studied using the satellite total solar irradi-
ance (TSI) records. Since 1978, TSI data and their
composites have been obtained by three main indepen-
dent science teams: ACRIMSAT/ACRIM3 (Willson and
Mordvinov, 2003), SOHO/VIRGO (Fröhlich, 2006) and
SORCE/TIM (Kopp and Lawrence, 2005a; Kopp et al.,
2005b). Figure 4 compares the ACRIM3, VIRGO and

TIM TSI from 2000 to 2014; the average irradiance is
about 1361 W/m2.

5.1 The 22-40 days time-scale
Figure 4B shows the power spectra in the 22-40 days
range of the three TSI records (Figure 4A) from 2003.15
to 2011.00 (Scafetta andWillson, 2013c). A strong spec-
tral peak is observed at ∼ 27.3 days (0.075 years) (Will-
son and Mordvinov, 1999), which corresponds to the
synodic period between the Carrington solar rotation
period of ∼ 25.38 days and the Earth’s orbital period of
∼ 365.25 days. The Carrington period refers to the rota-
tion of the Sun at 26◦ of latitude, where most sunspots
form and the solar magnetic activity emerges (Bartels,
1934). The observed 27.3-day period differs from the
Carrington 25.38-day period because the Sun is seen
from the orbiting Earth. Thus, the 27.3-day period de-
rives from Eq. 2 using T1 = 25.38 days and T2 = 365.25
days.
Figure 4B reveals additional spectral peaks at ∼ 24.8

days (∼ 0.068 years), ∼ 34-35 days (∼ 0.093-0.096 years),
and ∼ 36-38 days (∼ 0.099-0.104 years). They fall within
the range of the solar differential rotation that varies
from 24.7-25.4 days near the equator (Kotov, 2020) to
about 38 days near the poles (Beck, 2000).

However, the same periods appear to be also associ-
ated with the motion of the planets. In fact, the ∼ 24.8-

7
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Figure 4: [A] Comparison of ACRIMSAT/ACRIM3 (black), SOHO/VIRGO (blue) and SORCE/TIM (red) TSI records
versus daily sunspot number (gray). [B] Power spectrum comparison of ACRIMSAT/ACRIM3 (black), SOHO/VIRGO
(blue) and SORCE/TIM (red) TSI from 2003.15 to 2011.00. The arrows at the bottom depicts the periods reported
in Table 2. [C, Top] Periodogram of ACRIM results in W 2/m4 from 1992.5-2012. [C, Bottom] Power spectra of
ACRIM from 1992.5 to 2012.9) and of PMOD from 1997.75 to 2004.25. The yellow bars schematically indicate the
harmonics generated by the planets as reported in Tables 2, 3 and 4. [D] ACRIM and PMOD TSI composites during
solar maximum 23 (1998-2004). The black curve is from Eqs. 7 and 8. [E] High-pass filter of the PMOD (blue) and
ACRIM (black) TSI compared against a 1.092-year harmonic Jupiter function (red).. [F] ACRIM and PMOD TSI
since 1978 (red) against the models of Eqs. 13 and 14. [G, H] Planetary tidal function on the Sun (blue) (see Figure
9C) and its power spectrum (red). [I, J] Speed of the Sun relative to the solar system barycenter (blue) and its power
spectrum (red). (cf. Scafetta and Willson, 2013b,c).

day cycle corresponds to the synodic period between the sidereal orbital period of Jupiter (∼ 4332.6 days) and the

8



Cycle Type P (day) P (year) color
Sun equ-rot 24.7 0.0676 black

Sun – Ju equ-rot 24.8 0.0679 red
Sun – Ea equ-rot 26.5 0.0726 red
Sun – Ea Car-rot 27.3 0.0747 blue
Sun – Ve equ-rot 27.8 0.0761 red
Sun – Me equ-rot 34.3 0.0940 red
2/5 Me resonance 35.2 0.0964 green

Table 2: Solar equatorial (equ-) and Carrington (Car-
) rotation cycles relative to the fixed stars and to the
four major tidally active planets calculated using Eq. 2
where P1 = 24.7 days is the sidereal equatorial solar
rotation and P2 the orbital period of a planet. Last col-
umn: color of the arrows in Figure 4B. (cf. Scafetta and
Willson, 2013c).

sidereal equatorial rotation period of the Sun (∼ 24.7
days) calculated using Eq. 2. Additional synodic cycles
between the rotating solar equator and the orbital mo-
tion of the terrestrial planets are calculated at ∼ 26.5
days, relative to the Earth, ∼ 27.75 days, relative to
Venus, and ∼ 34.3 days, relative to Mercury (see Table
2). We also notice that the major TSI spectral peak at
34.7 days is very close to the ∼ 34.3-day Mercury-Sun
synodic period, although it would require the slightly
different solar rotation period of 24.89 days.

5.2 The 0.1-1.1 year time-scale
Tables 3 and 4 collect the orbital periods, the synodic
cycles and their harmonics among the terrestrial plan-
ets (Mercury, Venus, Earth and Mars). The tables also
show the synodic cycles between the terrestrial and the
Jovian planets (Jupiter, Saturn, Uranus, and Neptune).
The calculated periods are numerous and clustered. If
solar activity is modulated by planetary motions, these
frequency clusters should be observed also in the TSI
records.
Figure 4C shows two alternative power spectra of the

ACRIM and PMOD TSI records superposed to the dis-
tribution (yellow) of the planetary frequencies reported
in Tables 2, 3 and 4. The main power spectral peaks are
observed at: ∼ 0.070, ∼ 0.097, ∼ 0.20, ∼ 0.25, 0.30-0.34,
∼ 0.39, ∼ 0.55, 0.60-0.65, 0.7-0.9, and 1.0-1.2 years.
Figure 4C shows that all the main spectral peaks ob-

served in the TSI records appear compatible with the
clusters of the calculated orbital harmonics. For exam-
ple: the Mercury-Venus spring-tidal cycle (0.20 years);
the Mercury orbital cycle (0.24 years); the Venus-
Jupiter spring-tidal cycle (0.32 years); the Venus-
Mercury synodic cycle (0.40 years); the Venus-Jupiter
synodic cycle (0.65 years); and the Venus-Earth spring
tidal cycle (0.80 years). A 0.5-year cycle is also observed,
which could be due to the Earth crossing the solar equa-
torial plane twice a year and to a latitudinal dependency
of the solar luminosity. These results are also confirmed
by the power spectra of the planetary tidal function on

the Sun (see Figure 9C) and of the speed of the Sun rel-
ative to the solar system barycenter (Figures 4G-J).
The 1.0-1.2 year band observed in the TSI records

correlates well with the 1.092-year Earth-Jupiter syn-
odic cycle. Actually, the TSI records present maxima in
the proximity of the Earth-Jupiter conjunction epochs
(Scafetta and Willson, 2013b).
Figure 4D shows the ACRIM and PMOD TSI records

(red curves) plotted against the Earth-Jupiter conjunc-
tion cycles with the period of 1.092 years (black curve)
from 1998 to 2004. TSI peaks are observed around the
times of the conjunctions. The largest peak occurs at
the beginning of 2002 when the conjunction occurred at
a minimum of the angular separation between Earth
and Jupiter (0° 13’ 19").
Figure 4E shows the PMOD (blue) and ACRIM (black)

records band-pass filtered to highlight the 1.0-1.2 year
modulation. The two curves (blue and black) are com-
pared to the 1.092-year harmonic function (red):

f(t) = g(t) cos

[
2π

(t− 2002)

1.09208

]
, (12)

where the amplitude g(t) was modulated according to
the observed Schwabe solar cycle. The time-phase of
the oscillation is chosen at tEJ = 2002 because one of the
Earth-Jupiter conjunctions occurred on the 1st of Jan-
uary, 2002. The average Earth-Jupiter synodic period
is 1.09208 years. The TSI 1.0-1.2 year oscillation is sig-
nificantly attenuated during solar minima (1995-1997
and 2007-2009) and increases during solar maxima. In
particular, the figure shows the maximum of solar cycle
23 and part of the maxima of cycles 22 and 24 and con-
firms that the TSI modulation is well correlated with
the 1.092-year Earth-Jupiter conjunction cycle.
Figure 4F extends the model prediction back to 1978.

Here the TSI records are empirically compared against
the following equations:
for ACRIM,

f(t) = SA(t) + 0.2(SA(t)− 1360.58) cos

[
2π

(t− 2002)

1.09208

]
;

(13)
for PMOD,

f(t) = SP (t) + 0.2(SP (t)− 1365.3) cos

[
2π

(t− 2002)

1.09208

]
.

(14)
The blue curves are the 2-year moving averages, SA(t)
and SP (t), of the ACRIM and PMOD TSI composite
records, respectively. The data-model comparison con-
firms that the 1.092-year Earth-Jupiter conjunction cy-
cle is present since 1978. In fact, TSI peaks are also
found in coincidences with a number of Earth-Jupiter
conjunction epochs like those of 1979, 1981, 1984, 1990,
1991, 1992, 1993, 1994, 1995, 1998, 2011 and 2012. The
1979 and 1990 peaks are less evident in the PMOD TSI
record, likely because of the significant modifications
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Cycle Type P (day) P (year) min (year) max (year)
Me 1/2 orbital 44± 0 0.1205± 0.000 0.1205 0.1205

Me – Ju spring 45± 9 0.123± 0.024 0.090 0.156
Me – Ea spring 58± 10 0.159± 0.027 0.117 0.189
Me – Ve spring 72± 8 0.198± 0.021 0.156 0.219

Me orbital 88± 0 0.241± 0.000 0.241 0.241
Me – Ju synodic 90± 1 0.246± 0.002 0.243 0.250

Ea 1/4 orbital 91± 3 0.25± 0.000 0.250 0.250
Ve 1/2 orbital 112.5± 0 0.3075± 0.000 0.3075 0.3075

Me – Ea synodic 116± 9 0.317± 0.024 0.290 0.354
Ve – Ju spring 118± 1 0.324± 0.003 0.319 0.328

Ea 1/3 orbital 121± 7 0.333± 0.000 0.333 0.333
Me – Ve synodic 145± 12 0.396± 0.033 0.342 0.433

Ea 1/2 orbital 182± 0 0.500± 0.000 0.5 0.5
Ea – Ju spring 199± 3 0.546± 0.010 0.531 0.562

Ve orbital 225± 0 0.615± 0.000 0.241 0.241
Ve – Ju synodic 237± 1 0.649± 0.004 0.642 0.654
Ve – Ea spring 292± 3 0.799± 0.008 0.786 0.810

Ea orbital 365.25± 0 1.000± 0.000 1.000 1.000
Ea – Ju synodic 399± 3 1.092± 0.009 1.082 1.104
Ea – Ve synodic 584± 6 1.599± 0.016 1.572 1.620

Table 3: Major theoretical planetary harmonics with period P < 1.6 years. The synodic period is given by Eq. 2; the
spring period is half of it. (cf. Scafetta and Willson, 2013c).

of the published Nimbus7/ERB TSI record in 1979 and
1989-1990 proposed by the PMOD science team (Fröh-
lich, 2006; Scafetta, 2009; Scafetta et al., 2011).
The result suggests that the side of the Sun facing

Jupiter could be slightly brighter, in particular during
solar maxima. Thus, when the Earth crosses the Sun-
Jupiter line, it could receive an enhanced amount of ra-
diation. This coalesces with strong hotspots observed
on other stars with orbiting close giant planets (Shkol-
nik et al., 2003, 2005). Moreover, Kotov and Haneychuk
(2020) analyzed 45 years of observations and showed
that the solar photosphere, as seen from the Earth, is
pulsating with two fast and relatively stable periods
P0 = 9, 600.606(12) s and P1 = 9, 597.924(13) s. Their
beatings occur with a period of 397.7(2.6) days, which
coincides well with the synodic period between Earth
and Jupiter (398.9 days). A hypothesis was advanced
that the gravity field of Jupiter could be involved in the
process.

5.3 The solar cycles in the 2-9 year range
The power spectrum in Figure 3D shows peaks at 5-6
and 8.0-8.5 years. The former ones appear to be har-
monics of the Schwabe 11-year solar cycle discussed in
Section 3. The latter peaks are more difficult to be iden-
tified. In any case, some planetary harmonics involving
Mercury, Venus, Earth, Jupiter and Saturn could ex-
plain them.
For example, the Mercury-Venus orbital combination

repeats almost every 11.08 years, which is similar to the
11.07-year invariant inequality between Venus, Earth
and Jupiter discussed in Section 3. In fact, PM = 0.241

years and PV = 0.615 years, therefore their closest ge-
ometrical recurrences occur after 23 orbits of Mercury
(23PM = 5.542 years) and 9 orbits of Venus (9PV = 5.535
year). Moreover, we have 46PM = 11.086 years and
18PV = 11.07 years. Thus, the orbital configuration of
Mercury and Venus repeats every 5.54 years as well as
every 11.08 years and might contribute to explain the
5-6 years spectral peak observed in Figure 3D. More-
over, 8 orbits of the Earth (8PE = 8 years) and 13 or-
bits of Venus (13PV = 7.995 years) nearly coincide and
this combination might have contributed to produce the
spectral peak at about 8 years.
There is also the possibility that the harmonics at

about 5.5 and 8-9 years could emerge from the orbital
combinations of Venus, Earth, Jupiter and Saturn. In
fact, we have the following orbital invariant inequalities(

2

PV
− 3

PE
− 2

PJ
+

3

PS

)−1
= 5.43 yr (15)

and

2

(
− 1

PV
+

2

PE
− 2

PJ
+

1

PS

)−1
= 8.34 yr, (16)

where the orbital periods of the four planets are given
in Table 1. Eq. 15 combines the spring cycle between
Venus and Jupiter with the third harmonic of the syn-
odic cycle between Earth and Saturn. Eq. 16 is the first
inferior harmonic (because of the factor 2) of a combi-
nation of the synodic cycle between Venus and Saturn
and the spring cycle between Earth and Jupiter. Eqs.
15 and 16 express orbital invariant inequalities, whose
general physical properties are discussed in Section 7.
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Cycle Type P (year) Type P (year)
Me – Ne spring 0.1206 synodic 0.2413
Me – Ur spring 0.1208 synodic 0.2416
Me – Sa spring 0.1215 synodic 0.2429
Me – Ma spring 0.1382 synodic 0.2763
Ve – Ne spring 0.3088 synodic 0.6175
Ve – Ur spring 0.3099 synodic 0.6197
Ve – Sa spring 0.3142 synodic 0.6283
Ve – Ma spring 0.4571 synodic 0.9142
Ea – Ne spring 0.5031 synodic 1.006
Ea – Ur spring 0.5060 synodic 1.0121
Ea – Sa spring 0.5176 synodic 1.0352
Ea – Ma spring 1.0676 synodic 2.1352

Ma 1/2 orbital 0.9405 orbital 1.8809
Ma – Ne spring 0.9514 synodic 1.9028
Ma – Ur spring 0.9621 synodic 1.9241
Ma – Sa spring 1.0047 synodic 2.0094
Ma – Ju spring 1.1178 synodic 2.2355

Ju 1/2 orbital 5.9289 orbital 11.858
Ju – Ne spring 6.3917 synodic 12.783
Ju – Ur spring 6.9067 synodic 13.813
Ju – Sa spring 9.9310 synodic 19.862

Sa 1/2 orbital 14.712 orbital 29.424
Sa – Ne spring 17.935 synodic 35.870
Sa – Ur spring 22.680 synodic 45.360

Ur 1/2 orbital 41.874 orbital 83.748
Ur – Ne spring 85.723 synodic 171.45

Ne 1/2 orbital 81.862 orbital 163.72
Me – (Ju – Sa) spring 0.122 synodic 0.244
Me – (Ea – Ju) spring 0.155 synodic 0.309
Ve – (Ju – Sa) spring 0.317 synodic 0.635
Ea – (Ju – Sa) spring 0.527 synodic 1.053
Ve – (Ea – Ju) spring 0.704 synodic 1.408

Table 4: Additional expected harmonics associated with planetary orbits. The last five rows report the synodic
and spring periods of Mercury, Venus and Earth relative to the Jupiter-Saturn and Earth-Jupiter synodic periods
calculated as P1(23) = 1/|1/P1 − |1/P2 − 1/P3||. (cf. Scafetta and Willson, 2013b,c).

The above results, together with those discussed in
Section 4, once again suggest that the major features of
solar variability at the decadal scale from 2 to 22 years
could have been mostly determined by the combined ef-
fect of Venus, Earth, Jupiter and Saturn, as it was first
speculated by Wolf (1859).

6 The multi-decadal and millen-
nial solar cycles predicted by
the Jupiter-Saturn model

As discussed in Section 4.1, the Jupiter-Saturn model
interprets quite well two of the three main periods that
characterize the sunspot number record since 1749:
PS1 = 9.93, PS2 = 10.87 and PS3 = 11.86 years (Fig-
ure 3C) (Scafetta, 2012a). The two side frequencies
match the spring tidal period of Jupiter and Saturn
(9.93 years), and the tidal sidereal period of Jupiter

(11.86 years). The central peak at PS2 = 10.87 years can
be associated with a possible natural dynamo frequency
that is also predicted by a flux-transport dynamo model
(Macario-Rojas et al., 2018). However, the same peri-
odicity could be also interpreted as twice the invariant
inequality period of Eq. 15, which gives 10.86 years.
According to the latter interpretation, the central fre-
quency sunspot peak might derive from a dynamo syn-
chronized by a combination of the orbital motions of
Venus, Earth, Jupiter and Saturn.

The three harmonics of the Schwabe frequency band
beat at PS13 = 60.95 years, PS12 = 114.78 years and
PS23 = 129.95 years. Using the same vectorial for-
malism introduced in Section 3.1 to indicate combina-
tions of synodical cycles, a millennial cycle, PS123, is
generated by the beat between PS12 ≡ (1,−1, 0) and
PS23 ≡ (0, 1,−1) according to the equation (1,−1, 0) −
(0, 1,−1) = (1,−2, 1) that corresponds to the period
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PS123 =

(
1

PS1
− 2

PS2
+

1

PS3

)−1
≈ 983 yr, (17)

where we adopted the multi-digits accurate values
PS1 = 9.929656 years, PS2 = 10.87 years and PS3 =
11.862242 years (Table 1). However, the millennial beat
is very sensitive to the choice of PS2.
To test whether this three-frequency model actually

fits solar data, Scafetta (2012a) constructed its con-
stituent harmonic functions by setting their relative
amplitudes proportional to the power of the spectral
peaks of the sunspot periodogram. The three ampli-
tudes, normalized with respect to AS2, are: AS1 = 0.83,
AS2 = 1, AS3 = 0.55.
The time-phases of the two side harmonics are re-

ferred to: tS1 = 2000.475, which is the synodic conjunc-
tion epoch of Jupiter and Saturn (23/June/2000) rela-
tive to the Sun, when the spring tide must be stronger;
and tS3 = 1999.381, which is the perihelion date of
Jupiter (20/May/1999) when its tide is stronger. The
time-phase of the central harmonic was set to tS2 =
2002.364 and was estimated by fitting the sunspot num-
ber record with the three-harmonic model keeping the
other parameters fixed.
The time-phases of the beat functions are calculated

using the equation

t12 =
P2t1 − P1t2
P2 − P1

. (18)

It was found tS12 = 2095.311, tS13 = 2067.044 and tS23 =
2035.043. The time-phase of the beat between PS12 and
PS23 was calculated as tS123 = 2059.686. Herein, we ig-
nore that the phases for the conjunction of Jupiter and
Saturn vary by a few months from the average because
the orbits are elliptic, which could imply a variation up
to a few years of the time phases of the beat functions.
The proposed three-frequency harmonic model is

then given by the function

3∑
i=1

hi(t) =

3∑
i=1

ASi cos

(
2π

t− tSi

PSi

)
. (19)

The components and the beat functions generated by
the model are given by the equations

h1(t) = 0.83 cos

(
2π

t− 2000.475

9.929656

)
, (20)

h2(t) = 1.0 cos

(
2π

t− 2002.364

10.87

)
, (21)

h3(t) = 0.55 cos

(
2π

t− 1999.381

11.862242

)
. (22)

Thus, the final model becomes

h123(t) = h1(t) + h2(t) + h3(t). (23)
To emphasize its beats we can also write

f123(t) =

{
h123(t) if h123(t) ≥ 0

0 if h123(t) < 0
(24)

The resulting envelope functions of the beats are

b12(t) = 0.60 cos

(
2π

t− 1980.528

114.783

)
(25)

b13(t) = 0.40 cos

(
2π

t− 2067.044

60.9484

)
(26)

b23(t) = 0.45 cos

(
2π

t− 2035.043

129.951

)
(27)

Figure 5 shows the three-frequency solar model of Eq.
24 (red). Figure 5A compares it against two reconstruc-
tions of the solar activity based on 10Be and 14C cos-
mogenic isotopes (blue and black, respectively) (Bard
et al., 2000; Steinhilber et al., 2009). The millennial
beat cycle is represented by the green curve. The model
correctly hindcast all solarmulti-decadal grandminima
observed during the last 1000 years, known as the Oort,
Wolf, Spörer, Maunder and Dalton grand solar minima.
They approximately occurred when the three harmon-
ics interfered destructively. Instead, the multi-decadal
grand maxima occurred when the three harmonics in-
terfere constructively generating a larger perturbation
on the Sun.
Figure 5B compares Eq. 24 against the North-

ern Hemisphere proxy temperature reconstruction of
Ljungqvist (2010) (black). We notice the good time-
matching between the oscillations of the model and the
temperature record of both the millennial and the 115-
year modulations, which is better highlighted by the
smoothed filtered curves at the bottom of the figure.
The Roman Warm Period (RWP), Dark Age Cold Pe-
riod (DACP), Medieval Warm Period (MWP), Little Ice
Age (LIA) and the CurrentWarm Period (CWP) are well
hindcast by the three-frequency Jupiter-Saturn model.
Figure 5C shows the millennial oscillation (blue) pre-

dicted by Eq. 24 given by

gm(t) = cos

(
2π

t− 2059.686

983.401

)
. (28)

The curve is well correlated with the quasi millen-
nial solar oscillation – known as the Eddy oscillation –
throughout the Holocene as revealed by the 14C cosmo-
genic isotope record (red) and other geological records
(Kerr, 2001; Scafetta, 2012a, 2014b; Steinhilber et al.,
2009).
Scafetta (2012a) discussed other properties of the

three-frequency solar model. For example, five 59-63
year cycles appear in the period 1850-2150, which are
also well correlated with the global surface temperature
maxima around about 1880, 1940 and 2000. The model
also predicts a grand solar minimum around the 2030s
constrained between two grand solar maxima around
2000 and 2060. The modeled solar minimum around
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Figure 5: [A] Eq. 40 (red) against two reconstructions of solar activity based on 10Be and 14C cosmogenic isotopes
(Bard et al., 2000; Steinhilber et al., 2009). [B]. Eq. 40 (red) against a Northern Hemisphere proxy temperature
reconstruction by Ljungqvist (2010). [C] The millennial oscillation predicted by the three-frequency non-linear solar
model (blue) versus the TSI proxy model by Steinhilber et al. (2009) (red). (cf. Scafetta, 2012a, 2014b).

1970, the maximum around 2000 and the following so-
lar activity decrease, which is predicted to last until the
2030s, are compatible with the multidecadal trends of
the ACRIM TSI record (Willson and Mordvinov, 2003),
but not with those shown by the PMOD one (Fröh-

lich, 2006) that uses TSI modified data (Scafetta et al.,
2019b) and has a continuous TSI decrease since 1980.
The plots of ACRIM and PMOD TSI data are shown
in Figure 4F and have been extensively commented by
Scafetta et al. (2019b). Finally, the model also repro-
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duces a rather long Schwabe solar cycle of about 15
years between 1680 and 1700. This long cycle was ac-
tually observed both in the δ18O isotopic concentrations
found in Japanese tree rings (a proxy for temperature
changes) and in 14C records (a proxy for solar activity)
(Yamaguchia et al., 2010).
Scafetta (2014b) also suggested that the input of the

planetary forcing could be nonlinearly processed by the
internal solar dynamo mechanisms. As a consequence,
the output function might be characterized by addi-
tional multi-decadal and secular harmonics. The main
two frequency clusters are predicted at 57, 61, 65 years
and at 103, 115, 130, and 150 years. These harmon-
ics actually appear in the power spectra of solar activ-
ity (Ogurtsov et al., 2002). In particular, Cauquoin et
al. (2014) found the four secular periods (103, 115, 130,
150 years) in the 10Be record of 325–336 kyr ago. These
authors claimed that their analyzed records do not show
any evidence of a planetary influence but they did not
realize that their found oscillations could be derived
from the beating among the harmonics of Jupiter and
Saturn with the 11-year solar cycle, as demonstrated in
Scafetta (2014b).
We notice that the multi-secular and millennial hind-

casts of the solar activity records made by the three-
frequency Jupiter-Saturn model shown in Figure 5 are
impressive because the frequencies, phases and ampli-
tudes of the model are theoretically deduced from the
orbits of Jupiter and Saturn and empirically obtained
from the sunspot record from 1750 to 2010. The pro-
longed periods of high and low solar activity derive
from the constructive and destructive interference of
the three harmonics.

7 Orbital invariant inequality
model: the Jovian planets and
the long solar and climatic
cycles

The orbital invariant inequality model was first pro-
posed by Scafetta et al. (2016) and successively devel-
oped by Scafetta (2020) using only the orbital periods
of the four Jovian planets (Table 1). It successfully
reconstructs the main solar multi-decadal to millen-
nial oscillations like those observed at 55-65 years, 80-
100 years (Gleissberg cycle), 155-185 years (Jose cycle),
190-240 years (Suess-de Vries cycle), 800-1200 years
(Eddy cycle) and at 2100-2500 years (Bray-Hallstatt cy-
cle) (Abreu et al., 2012; McCracken et al., 2001, 2013;
Scafetta, 2016). The model predictions well agree with
the solar and climate long-term oscillations discussed,
for example, in Neff et al. (2001) and McCracken et al.
(2013). Let us now describe the invariant inequality
model in some detail.
Given two harmonics with period P1 and P2 and two

integers n1 and n2, there is a resonance if P1/P2 =

n1/n2. In the real planetary motions, this identity is
almost always not satisfied. Consequently, it is possi-
ble to define a new frequency f and period P using the
following equation

f =
1

P
=

∣∣∣∣n1P1
− n2
P2

∣∣∣∣ , (29)

which is called “inequality”. Clearly, f and P represent
the beat frequency and the beat period between n1/P1

and n2/P2. The simplest case is when n1 = n2 = 1,
which corresponds to the synodal period between two
planets defined in Eq. 2, which is reported below for
convenience:

P12 =
1

f12
=

∣∣∣∣ 1

P1
− 1

P2

∣∣∣∣−1 . (30)

Eq. 30 indicates the average time interval between two
consecutive planetary conjunctions relative to the Sun.
The conjunction periods among the four Jovian planets
are reported in Table 5.
Eq. 29 can be further generalized for a system of n

orbiting bodies with periods Pi (i = 1, 2, . . . , n). This
defines a generic inequality, represented by the vector
(a1, a2, . . . , an), as

f =
1

P
=

∣∣∣∣∣
n∑

i=1

ai
Pi

∣∣∣∣∣ , (31)

where ai are positive or negative integers.
Among all the possible orbital inequalities given by

Eq. 31, there exists a small subset of them that is char-
acterized by the condition:

n∑
i=1

ai = 0. (32)

This special subset of frequencies is made of the syn-
odal planetary periods (Eq. 30) and all the beats among
them.
It is easy to verify that the condition imposed by Eq.

32 has a very important physical meaning: it defines a
set of harmonics that are invariant with respect to any
rotating system such as the Sun and the heliosphere.
Given a reference system at the center of the Sun and
rotating with period Po, the orbital periods, or frequen-
cies, seen relative to it are given by

f ′i =
1

P ′i
=

1

Pi
− 1

Po
. (33)

With respect to this rotating frame of reference, the or-
bital inequalities among more planets are given by:

f ′ =
1

P ′
=

∣∣∣∣∣
n∑

i=1

ai
P ′i

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

ai
Pi
−
∑n

i=1 ai
Po

∣∣∣∣∣ . (34)

If the condition of Eq. 32 is imposed, we have that f ′ = f
and P ′ = P . Therefore, this specific set of orbital in-
equalities remains invariant regardless of the rotating
frame of reference from which they are observed.
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Inv. Ineq. Period (year) Julian Date Date Long.
Jup-Sat (1,-1,0,0) 19.8593 2451718.4 2000.4761 52° 01’
Jup-Ura (1,0,-1,0) 13.8125 2450535.8 1997.2383 305° 22’
Jup-Nep (1,0,0,-1) 12.7823 2450442.1 1996.9818 297° 21’
Sat-Ura (0,1,-1,0) 45.3636 2447322.1 1988.4397 269° 05’
Sat-Nep (0,1,0,-1) 35.8697 2447725.6 1989.5444 281° 14’
Ura-Nep (0,0,1,-1) 171.393 2449098.1 1993.3021 289° 22’

Table 5: Heliocentric synodic invariant inequalities and periods with the timing of the planetary conjunctions closest
to 2000 AD. (cf. Scafetta, 2020).

For example, the conjunction of two planets relative
to the Sun is an event that is observed in the same way
in all rotating systems centered in the Sun. Since the
Sun is characterized by a differential rotation that de-
pends on its latitude, this means that all solar regions
simultaneously feel the same planetary beats, which
can strongly favor the emergence of synchronized phe-
nomena in the Sun. Due to this physical property, the
orbital inequalities that fulfill the condition given byEq.
32 were labeled as “invariant” inequalities.
Table 6 reports the orbital invariant inequalities gen-

erated by the large planets (Jupiter, Saturn, Uranus,
and Neptune) up to some specific order. They are listed
using the vectorial formalism:

f =
1

P
= (a1, a2, a3, a4), (35)

where a1 (for Jupiter), a2 (for Saturn), a3 (for Uranus)
and a4 (for Neptune) are positive or negative integers
and their sum is zero (Eq. 32).
Two order indices, M and K, can also be used. M is

the maximum value among |ai| and K is defined as

K =
1

2
(|a1|+ |a2|+ |a3|+ |a4|). (36)

Since for the invariant inequalities the condition of Eq.
32 must hold, K indicates the number of synodal fre-
quencies between Jovian planet pairs producing a spe-
cific orbital invariant. For example, K = 1 means that
the invariant inequality is made of only one synodal fre-
quency between two planets, K = 2 indicates that the
invariant inequality is made of two synodal frequencies,
etc.
For example, the invariant inequality cycle

(1,−3, 1, 1) has K = 3 and it is the beat obtained
by combining the synodal cycles of Jupiter-Saturn,
Saturn-Uranus and Saturn-Neptune because it
can be decomposed into three synodal cycles like
(1,−3, 1, 1) = (1,−1, 0, 0) − (0, 1,−1, 0) − (0, 1, 0,−1). In
the same way, it is possible to decompose any other
orbital invariant inequality. Hence, all the beats among
the synodal cycles are invariant inequalities and can
all be obtained using the periods and time phases listed
in Table 5.
Table 6 lists all the invariant inequalities of the four

Jovian planets up to M = 5. They can be collected into

clusters or groups that recall the observed solar oscilla-
tions. The same frequencies are also shown in Figures
6A and B revealing a harmonic series characterized by
clusters with a base frequency of 0.00558 1/year that
corresponds to the period of 179.2 years, which is known
as the Jose cycle (1965) (Fairbridge and Shirley, 1987;
Landscheidt, 1999).
The physical importance of the harmonics listed in

Table 6 is shown in Figure 6C, which compares a so-
lar activity reconstruction from a 14C record, and the
climatic reconstruction from a δ18O record covering the
period from 9500 to 6000 years ago (Neff et al., 2001):
the two records are strongly correlated.
Figure 6D shows that the two records present nu-

merous common frequencies that correspond to the cy-
cles of Eddy (800–1200 years), Suess-de Vries (190–240
years), Jose (155–185 years), Gleissberg (80–100 years),
the 55–65 year cluster, another cluster at 40-50 years,
and some other features. Figure 6D also compares the
common spectral peaks of the two records against the
clusters of the invariant orbital inequalities (red bars)
reported in Figure 6B and listed in Table 6. The figure
shows that the orbital invariant inequality model well
predicts all the principal frequencies observed in solar
and climatic data throughout the Holocene.
The efficiency of themodel in hindcasting both the fre-

quencies and the phases of the observed solar cycles can
also be more explicitly shown. For example, the model
perfectly predicts the great Bray-Hallstatt cycle (2100-
2500 years) that was studied in detail by McCracken et
al. (2013) and Scafetta et al. (2016). The first step to ap-
ply the model is to determine the constituent harmon-
ics of the invariant inequality (1,−3, 1, 1). This cycle is
a combination of the orbital periods of Jupiter, Saturn,
Uranus and Neptune that gives

PJSUN =
1

fJSUN
=

(
1

Pj
− 3

PS
+

1

PU
+

1

PN

)−1
= 2317.56yr.

(37)
The constituent harmonics are the synodic cycles of
Jupiter-Saturn, Saturn-Uranus and Saturn-Neptune
as described by the following relation

(1,−3, 1, 1) = (1,−1, 0, 0)− (0, 1,−1, 0)− (0, 1, 0,−1).
(38)

Thus, the invariant inequality (1,−3, 1, 1) is the longest
beatmodulation generated by the superposition of these
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Figure 6: [A] The periods of the orbital invariant inequalities produced by Jupiter, Saturn, Uranus and Neptune for
1 ≤M ≤ 5. [B] The same harmonics highlighting their base frequency ν of the Jose cycle (179.2 years). (cf. Scafetta,
2020). [C] Visual correlation between the INTCAL98 atmospheric∆14C record (Stuiver et al., 1998) and a speleothem
calcite δ18O record (adapted from Neff et al., 2001). [D] Comparison between the cross-spectral analysis of the two
records in C against the invariant inequalities of the solar system of Table 6 (red bars). (cf. Scafetta, 2020). [E, Top]
Eqs. 39 and 40 that model the Hallstatt oscillation predicted by the invariant inequality (1,−3, 1, 1). [E, Bottom] Eq.
40 (blue) against the the ∆14C record (black) throughout the Holocene (Reimer et al., 2004, IntCal04.14c) and the
observed Hallstatt oscillation deduced from a regression harmonic model (red). (cf. Scafetta et al., 2016; Scafetta,
2020).

three synodic cycles and it can be expressed as the pe-
riodic function

f(t) = sin

(
2π
t− tJS
PJS

)
+sin

(
2π
t− tSU

PSU

)
+sin

(
2π
t− tSN

PSN

)
(39)

where Pij are the synodic periods and tij are the corre-
spondent time-phases listed in Table 5.
Eq. 39 is plotted in Figure 6E and shows the long

beat modulation superposed to the Bray-Hallstatt pe-

riod of 2318 years found in the ∆14C (‰) record (black)
throughout the Holocene (Reimer et al., 2004, Int-
Cal04.14c). This beat cycle is captured, for example, by
the function:

fB(t) = − sin

(
2π
t− tJS
PJS

− 2π
t− tSU

PSU
− 2π

t− tSN

PSN

)
,

(40)
whose period is 2318 years and the timing is fixed by
the three conjunction epochs and the respective synodic
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(Jup, Sat, Ura, Nep) (M, K) T (year) cluster (Ven, Ear, Jup, Sat) (M, K) T (year)
(1, -3, 5, -3) (5, 6) 42.1 ( 3, -5, 5, -3 ) ( 5, 8 ) 5.10
(0, 0, 4, -4) (4, 4) 42.8 ( -1, 2, -3, 2 ) ( 3, 4 ) 5.28
(2, -5, 1, 2) (5, 5) 43.7 ( 2, -3, -2, 3 ) ( 3, 5 ) 5.43
(-1, 3, 3,-5) (5, 6) 43.7 ∼ 45 year ( -3, 5, 2, -4 ) ( 5, 7 ) 6.40
(1, -2, 0, 1) (2, 2) 44.5 ( 0, 0, 3, -3 ) ( 3, 3 ) 6.62
(0, 1, -1, 0) (1, 1) 45.4 ( 3, -5, 4, -2 ) ( 5, 7 ) 6.86
(-1, 4, -2, -1) (4, 4) 46.3 ( -1, 2, -4, 3 ) ( 4, 5 ) 7.19
(1, -1, -5, 5) (5, 6) 47.2 ( 2, -3, -3, 4 ) ( 4, 6 ) 7.47
(1, -3, 4, -2) (4, 5) 55.8 ( -3, 5, 1, -3 ) ( 5, 6 ) 9.44
(0, 0, 3, -3) (3, 3) 57.1 ( 0, 0, 2, -2 ) ( 2, 2 ) 9.93
(2, -5, 0, 3) (5, 5) 58.6 ( 3, -5, 3, -1 ) ( 5, 6 ) 10.47
(-1, 3, 2, -4) (4, 5) 58.6 ∼ 60 year ( -1, 2, -5, 4 ) ( 5, 6 ) 11.27
(1, -2, -1, 2) (2, 3) 60.1 ( 2, -3, -4, 5 ) ( 5, 7 ) 11.97
(0, 1, -2, 1) (2, 2) 61.7 ( -3, 5, 0, -2 ) ( 5, 5 ) 18.00
(-1, 4, -3, 0) (4, 4) 63.4 ( 0, 0, 1, -1 ) ( 1, 1 ) 19.86
(1, -3, 3, -1) (3, 4) 82.6 ( 3, -5, 2, 0 ) ( 5, 5 ) 22.14
(0, 0, 2, -2) (2, 2) 85.7 ( -3, 5, -1, -1 ) ( 5, 5 ) 192.8
(2, -5, -1, 4) (5, 6) 89.0
(-1, 3, 1, -3) (3, 4) 89.0 Gleissberg
(1, -2, -2, 3) (3, 4) 92.5 (Mer, Ven, Ear, Jup) (M, K) T (year)
(0, 1, -3, 2) (3, 3) 96.4 ( -2, 3, 4, -5 ) (5, 7) 6.63
(-1, 4, -4, 1) (4, 5) 100.6 ( 2, -4, -2, 4 ) (4, 6) 7.18
(1, -3, 2, 0) (3, 3) 159.6 ( 1, -2, -1, 2 ) (2, 3) 14.35
(0, 0, 1, -1) (1, 1) 171.4 Jose ( 3, -5, 2, 0 ) ( 5, 5 ) 22.14
(2, -5, -2, 5) (5, 7) 185.1 ( 1, -5, 4, 0 ) (5, 5) 40.82
(-1, 3, 0, -2) (3, 3) 185.1
(1, -2, -3, 4) (4, 5) 201.1
(0, 1, -4, 3) (4, 4) 220.2 Suess-de Vries
(-1, 4, -5, 2) (5, 6) 243.4
(0, -1, 5, -4) (5, 5) 772.7 Eddy(-1, 2, 4, -5) (5, 6) 1159
(1, -3, 1, 1) (3, 3) 2318 Bray-Hallstatt

Table 6: (Left) List of invariant inequalities for periods T ≥ 40 years and M ≤ 5 for Jupiter, Saturn, Uranus,
Neptune. (Right) The same for Venus, Earth, Jupiter, and Saturn, and for Mercury, Venus, Earth and Jupiter. (cf.
Scafetta, 2020).

periods. In fact, the argument of the above sinusoidal
function is the sum of three terms that correspond to
those of Equation 38. Equation 40 is plotted in Figure
6E as the blue curve.
Three important invariant inequalities – (1,−3, 2, 0),

(0, 0, 1,−1) and (−1, 3, 0,−2) – are found within the Jose
155–185 year period band:

PJSU =
1

fJSU
=

(
1

PJ
− 3

PS
+

2

PU

)−1
= 159.59 yr, (41)

PUN =
1

fUN
=

(
1

PU
− 1

PN

)−1
= 171.39 yr, (42)

PJSN =
1

fJSN
=

(
− 1

PJ
+

3

PS
− 2

PN

)−1
= 185.08 yr.

(43)

The long beat between Eq. 42 and Eq. 41 – that is
(0, 0, 1,−1) − (−1, 3, 0,−2) = (1,−3, 1,−1) – is the great
Bray–Hallstatt cycle. The fast beat between Eq. 42 and
Eq. 43 – (0, 0, 1,−1) + (−1, 3, 0,−2) = (−1, 3, 1,−3) – is
the Gleissberg 89-year cycle, which also corresponds to
half of the Jose period of ∼178 year that regulates the
harmonic structure of the wobbling of the solar motion.

Another interesting invariant inequality is
(1,−2,−1, 2) = (1, 0,−1, 0) − 2(0, 1, 0,−1), which is
a beat between the synodic period of Jupiter and
Uranus (1,0,-1,0) and the first harmonic of the synodic
period of Saturn and Neptune. The period is:

PJSN =
1

fJSN
=

(
1

PJ
− 2

PS
− 1

PU
+

2

PN

)−1
= 60.1 yr,

(44)
The beat oscillation is given by the equation:
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f(t) = cos

(
2π
t− tJU
PJU

)
+ cos

(
2π · 2 t− tSN

PSN

)
, (45)

that shows a 60.1-year beat oscillation. The pattern is
found in both solar and climate records and could be
physically relevant because the maxima of the 60-year
beat occur during specific periods – the 1880s, 1940s,
and 2000s – that were characterized by maxima in cli-
matic records of global surface temperatures and in sev-
eral other climate index records (Agnihotri and Dutta,
2003; Scafetta, 2013, 2014c; Wyatt and Curry, 2014).
The 60-year oscillation was even found in the records of
the historical meteorite falls in China from AD 619 to
1943 (Chang and Yu, 1981; Scafetta et al., 2019a; Yu et
al., 1983).
An astronomical 60-year oscillation can be obtained

in several ways. In particular, Scafetta (2010) and
(2012c) showed that it is also generated by three con-
secutive conjunctions of Jupiter and Saturn since their
synodic cycle is 19.86 years and every three alignments
the conjunctions occur nearly in the same constellation.
The three consecutive conjunctions are different from
each other because of the ellipticity of the orbits. The
60-year pattern has been known since antiquity as the
Trigon of the Great Conjunctions (Kepler, 1606), which
also slowly rotates generating a quasi-millennial cycle
known as the Great Inequality of Jupiter and Saturn
(Etz, 2000; Lovett, 1895; Scafetta, 2012c; Wilson, 2013).
Both the 60-year and the quasi-millennial oscilla-

tions also characterize the evolution of the instanta-
neous eccentricity function of Jupiter (Scafetta et al.,
2019a). The quasi millennial oscillation (the Heddy cy-
cle) could be related to the two orbital invariant inequal-
ities (0,−1, 5,−4) ≡ 772.7 years and (−1, 2, 4,−5) ≡
1159 years. Their beat frequency being (0,−1, 5,−4) −
(−1, 2, 4,−5) = (1,−3, 1, 1) ≡ 2318 years, which corre-
sponds to the Bray–Hallstatt cycle. Their mean fre-
quency, instead, is 0.5(0,−1, 5,−4) + 0.5(−1, 2, 4,−5) =
0.5(−1, 1, 9,−9) ≡ 927 years that reminds the Great In-
equality cycle of Jupiter and Saturn suggesting that
this great cycle could also be generated by the beat
between the synodic period of Jupiter and Saturn,
(1,−1, 0, 0) and the ninth harmonic of the synodic pe-
riod of Uranus and Neptune, 9(0, 0, 1,−1).
The invariant inequality model can be extended to

all the planets of the solar system (see Tables 3 and
4 and 6). The ordering of the frequencies according to
their physical relevance depends on the specific physi-
cal function involved (e.g. tidal forcing, angularmomen-
tum transfer, space weather modulation, etc.) and will
be addressed in future work.

8 The Suess-de Vries cycle (190-
240 years)

The Suess-de Vries cycle is an important secular solar
oscillation commonly found in radiocarbon records (de

Vries, 1958; Suess, 1965). Several recent studies have
highlighted its importance (Abreu et al., 2012; Beer et
al., 2018; Lüdecke et al., 2015; McCracken et al., 2013;
Neff et al., 2001; Stefani et al., 2020b, 2021; Wagner et
al., 2001; Weiss and Tobias, 2016). Its period varies be-
tween 200 and 215 years but the literature also suggests
a range between 190 and 240 years.

Stefani et al. (2021) argued that the Suess-de Vries
cycle, together with the Hale and the Gleissberg-type
cycles, could emerge from the synchronization between
the 11.07-year periodic tidal forcing of the Venus–
Earth–Jupiter system and the 19.86-year periodic mo-
tion of the Sun around the barycenter of the solar sys-
tem due to Jupiter and Saturn. This model yields a
Suess-de Vries-type cycle of 193 years.

Actually, the 193-year period is the orbital invari-
ant inequality (−3, 5,−1,−1) = (0, 0, 1,−1)− (3,−5, 2, 0)
where (0, 0, 1,−1) is the synodic cycle of Jupiter and
Saturn (19.86 years) and (3,−5, 2, 0) is the 22.14-year
orbital inequality cycle of Venus, Earth and Jupiter
(Eq. 5). We also notice that (0, 0, 1,−1) + (3,−5, 2, 0) =
(3,−5, 3,−1) corresponds to the period of 10.47 years
which is a periodicity that has been observed in astro-
nomical and climate records (Scafetta, 2014b; Scafetta
et al., 2020).

The orbital invariant inequality model discussed in
Section 7 provides an alternative and/or complemen-
tary origin of the Suess-de Vries cycle. In fact, the
orbital invariant inequalities among Jupiter, Saturn,
Uranus and Neptune form a cluster of planetary beats
with periods between 200 and 240 years. Thus, the
Suess-de Vries cycle might also emerge as beat cycles
among the orbital invariant inequalities with periods
around 60 years and those belonging to the Gleissberg
frequency band with periods around 85 years. See Ta-
ble 6. In fact, their synodic cycles would approximately
be

1

1/60− 1/85
= 204 yr. (46)

It might also be speculated that the Suess-de Vries
cycle originates from a beat between the Trigon of the
Great Conjuctions of Jupiter and Saturn (3 × 19.862 =
59.6 years, which is an oscillation that mainly emerges
from the synodical cycle between Jupiter and Saturn
combined with the eccentricity of the orbit of Jupiter)
and the orbital period of Uranus (84 years). In this case,
we would have 1/(1/59.6− 1/84) = 205 years.
The last two estimates coincide with the 205-year

Suess-de Vries cycle found in radiocarbon records by
Wagner et al. (2001) and are just slightly smaller than
the 208-year cycle found in other similar recent studies
(Abreu et al., 2012; Beer et al., 2018; McCracken et al.,
2013; Weiss and Tobias, 2016)
We notice that the natural planetary cycles that could

theoretically influence solar activity are either the or-
bital invariant inequality cycles (which involve the syn-
odic cycles among the planets assumed to be moving
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on circular orbits) and the orbital cycles of the planets
themselves because the orbits are not circular but ec-
centric, and their harmonics.

9 Evidences for planetary peri-
ods in climatic records

A number of solar cycles match the periods found in cli-
matic records (see Figures 5, 6 and 7) and often appear
closely correlated for millennia (e.g.: Neff et al., 2001;
Scafetta et al., 2004, 2006; Scafetta, 2009, 2021; Stein-
hilber et al., 2012, and many others).
Evidences for a astronomical origin of the Sub-

Milankovitch climate oscillations have been discussed
in several studies (e.g.: Scafetta, 2010, 2014b, 2016,
2018, 2021). Let us now summarizes the main findings
relative to the global surface temperature record from
1850 to 2010.
Figures 7A and B compare the time-frequency analy-

ses between the speed of the Sun relative to the center of
mass of the solar system (Figure 2) and the HadCRUT3
global surface records (Scafetta, 2014b). It can be seen
that the global surface temperature oscillations mimic
several astronomical cycles at the decadal and multi-
decadal scales, as first noted in Scafetta (2010) and
later confirmed by advanced spectral coherence analy-
ses (Scafetta, 2016, 2018).
The main periods found in the speed of the Sun (Fig-

ure 7A) are at about 5.93, 6.62, 7.42, 9.93, 11.86, 13.8,
20 and 60 years. Most of them are related to the orbits
of Jupiter and Saturn. The main periods found in the
temperature record (Figure 7B) are at about 5.93, 6.62,
7.42, 9.1, 10.4, 13.8, 20 and 60 years. Most of these pe-
riods appear to coincide with orbital invariant inequal-
ities (Table 6) but the 9.1 and 10.4-year cycles.
Among the climate cycles, it is also found an impor-

tant period of about 9.1 years, which is missing among
the main planetary frequencies shown in Figure 7A.
Scafetta (2010) argued that this oscillation is likely
linked to a combination of the 8.85-year lunar apsidal
line rotation period, the first harmonic of the 9-year
Saros eclipse cycle and the 9.3-year first harmonic of
the soli-lunar nodal cycle (Cionco et al., 2021; Scafetta,
2012d, supplement). These three lunar cycles induce
oceanic tides with an average period of about 9.1 years
(Wood, 1986; Keeling andWhorf, 2000) that could affect
the climate system by modulating the atmospheric and
oceanic circulation.
The 10.4-year temperature cycle is variable and ap-

pears to be the signature of the 11-year solar cycle
that varies between the Jupiter-Saturn spring tidal cy-
cle (9.93 years) and the orbital period of Jupiter (11.86
years). Note that in Figure 7B, the frequency of this
temperature signal increased in time from 1900 to 2000.
This agrees with the solar cycle being slightly longer
(and smaller) at the beginning of the 20th century and
shorter (and larger) at its end (see Figure 3). We also

notice that the 10.46-year period corresponds to the or-
bital invariant inequality (3,−5, 3,−1) among Venus,
Earth, Jupiter and Saturn.
The above findings were crucial for the construction

of a semi-empirical climate model based on the several
astronomically identified cycles (Scafetta, 2010, 2013).
The model included the 9.1-year solar-lunar cycle, the
astronomical-solar cycles at 10.5, 20, 60 and, in addi-
tion, two longer cycles with periods of 115 years (using
Eq. 25) and a millennial cycle here characterized by
an asymmetric 981-year cycle with a minimum around
1700 (the Maunder Minimum) and two maxima in 1080
and 2060 (using Eq. 28). The model was completed
by adding the volcano and the anthropogenic compo-
nents deduced from the ensemble average prediction of
the CMIP5 global circulation models assuming an equi-
librium climate sensitivity (ECS) of about 1.5°C that
is half of that of the model average, which is about
3°C. This operation was necessary because the iden-
tified natural oscillations already account for at least
50% of the warming observed from 1970 to 2000. Re-
cently, Scafetta (2021) upgraded the model by adding
some higher frequency cycles.
Figure 7C shows the HadCRUT4.6 global surface

temperature record (Morice et al., 2012) against the
ensemble average simulations produced by the CMIP6
global circulation models (GCMs) using historical forc-
ings (1850-2014) extended with three different shared
socioeconomic pathway (SSP) scenarios (2015-2100)
(Eyring et al., 2016). Figure 7D shows the same temper-
ature record against the proposed semi-empirical astro-
nomical harmonic model under the same forcing condi-
tions. The comparison between panels C and D shows
that the semi-empirical harmonic model performs sig-
nificantly better than the classical GCMs in hindcast-
ing the 1850-2020 temperature record. It also predicts
moderate warming for the future decades, as explained
in detail by Scafetta (2013, 2021).

10 Possible physical mechanisms
Many authors suggest that solar cycles revealed in
sunspot and cosmogenic records could derive from a de-
terministic non-linear chaotic dynamo (Weiss and To-
bias, 2016; Charbonneau, 2020, 2022). However, the as-
sumption that solar activity is only regulated by dynam-
ical and stochastic processes inside the Sun has never
been validatedmainly because thesemodels have a poor
hindcasting capability.
We have seen how the several main planetary har-

monics and orbital invariant inequalities tend to clus-
ter towards specific frequencies that characterize the
observed solar activity cycles. This suggests that
the strong synchronization among the planetary orbits
could be further extended to the physical processes that
are responsible for the observed solar variability.
The physical mechanisms that could explain how the

planets may directly or indirectly influence the Sun are
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Figure 7: [A] Time-frequency analysis (L = 110 years) of the speed of the Sun relative to the barycenter of the solar
system. [B] Time frequency analysis (L = 110 years) of the detrended HadCRUT3 temperature record. (cf. Scafetta,
2014b). [C] Ensemble CMIP6 GCM mean simulations for different emission scenarios versus the HadCRUT global
surface temperatures. [D] The same record compared with the solar-astronomical harmonic climate model Scafetta
(2013) updated in Scafetta (2021).

currently unclear. It can be conjectured that the solar
dynamo might have been synchronized to some plane-
tary periods under the action of harmonic forcings act-
ing on it for several hundred million or even billion
years. In fact, as pointed out by Huygens in the 17th
century, synchronization can occur even if the harmonic
forcing is very weak but lasts long enough (Pikovsky et

al., 2001).

There may be two basic types of mechanisms referred
to how and where in the Sun the planetary forcing is
acting. In particular, we distinguish between the mech-
anisms that interact with the outer regions of the Sun
and those that act in its interior.
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1. Planetary tides can perturb the surface magnetic
activity of the Sun, the solar corona, and thus the
solar wind. The solar wind, driven by the rotating
twisted magnetic field lines (Parker, 1958; Tatter-
sall, 2013), can reconnect with the magnetic fields
of the planets when they get closer during con-
junctions. This would modulate the solar mag-
netic wind density distribution and the screening
efficiency of the whole heliosphere on the incom-
ing cosmic rays. The effect would be a modulation
of the cosmogenic records which then also act on
the cloud cover. It is also possible that the plan-
ets can focus andmodulate by gravitational lensing
the flux of interstellar and interplanetary matter –
perhaps even of dark matter – towards the Sun and
the Earth stimulating solar activity (Bertolucci et
al., 2017; Scafetta, 2020; Zioutas et al., 2022) and,
again, contributing to clouds formation on Earth
which alters the climate.

2. Gravitational planetary tides and torques could
reach the interior of the Sun and synchronize the
solar dynamo by forcing its tachocline (Abreu et
al., 2012; Stefani et al., 2016, 2019, 2021) or even
modulate the nuclear activity in the core (Scafetta,
2012b; Wolff and Patrone, 2010).

Scafetta and Willson (2013b) argued that these two ba-
sic mechanisms could well complement each other. In
principle, it might also be possible that the physical so-
lar dynamo is characterized by a number of natural fre-
quencies that could resonate with the external periodic
forcings yielding some type of synchronization. Let us
briefly analyze several cases.

10.1 Mechanisms associated with plane-
tary alignments

The frequencies associated with planetary alignments
and, in particular, those of the Jovian planets, were
found to reproduce the main observed cycles in solar
and climatic data. Scafetta (2020) showed examples
of gravitational field configurations produced by a toy-
model made of four equal masses orbiting around a 10
times more massive central body.
The Sun could feel planetary conjunctions because at

least twenty-five out of thirty-eight largest solar flares
were observed to start when one or more planets among
Mercury, Venus, Earth, and Jupiter were either nearly
above the position of the flare (within 10◦ longitude) or
on the opposite side of the Sun (Hung, 2007). For ex-
ample, Mörner et al. (2015) showed that, on January 7
2014, a giant solar flare of class X1.2 was emitted from
the giant sunspot active region AR1944 (NASA, 2014),
and that the flare pointed directly toward the Earth
when Venus, Earth and Jupiter were exactly aligned in
a triple conjunction and the planetary tidal index cal-
culated by Scafetta (2012b) peaked at the same time.

Hung (2007) estimated that the probability for this
to happen at random was 0.039%, and concluded that
“the force or momentum balance (between the solar at-
mospheric pressure, the gravity field, andmagnetic field)
on plasma in the looping magnetic field lines in solar
corona could be disturbed by tides, resulting inmagnetic
field reconnection, solar flares, and solar storms.” Com-
parable results and confirmations that solar flares could
be linked to planetary alignments were recently dis-
cussed in Bertolucci et al. (2017) and Petrakou (2021).

10.2 Mechanisms associated with the
solar wobbling

The movement of the planets and, in particular, of
the Jovian ones, are reflected in the solar wobbling.
Charvátová (2000) and Charvátová and Hejda (2014)
showed that the solar wobbling around the center of
mass of the solar system forms two kinds of complex
trajectories: an ordered one, where the orbits appear
more symmetric and circular, and a disordered type,
where the orbits appear more eccentric and randomly
distributed. These authors found that the alterna-
tion between these two states presents periodicities re-
lated, for example, to the Jose (∼178 years) and Bray–
Hallstatt (∼2300 years) cycles.
Figure 8A compares the Bray–Hallstatt cycle found in

the ∆14C (‰) record (black) throughout the Holocene
(Reimer et al., 2004, IntCal04.14c) with two orbital
records representing the periods of the pericycle and
apocycle orbital arcs of the solar trajectories as exten-
sively discussed by Scafetta et al. (2016). Figure 8B
shows the solar wobbling for about 6000 years where
the alternation of ordered and disordered orbital pat-
terns typically occurs according to the Bray–Hallstatt
cycle of 2318 years (Scafetta et al., 2016).
In particular, the astronomical records show that the

Jose cycle is modulated by the Bray–Hallstatt cycle.
Figures 8C and D show examples of how planetary con-
figurations can reproduce the Bray–Hallstatt cycle: see
details in Scafetta et al. (2016). The fast oscillations
correspond to the orbital invariant inequalities with pe-
riods of 159, 171.4 and 185 years while the long beat
oscillation corresponds to the orbital invariant inequal-
ity with a period of 2318 years, which perfectly fits the
Bray–Hallstatt cycle as estimated in McCracken et al.
(2013) (see Table 6). It is possible that the pulsing dy-
namics of the heliosphere can periodically modulate the
solar wind termination shock layer and, therefore, the
incoming interstellar dust and cosmic ray fluxes.

10.3 Mechanisms associatedwith plane-
tary tides and tidal torques

Discussing the tidal interactions between early-type bi-
naries, Goldreich and Nicholson (1989) demonstrated
that the tidal action and torques can produce impor-
tant effects in the thin overshooting region between the
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Figure 8: [A] The Hallstatt oscillation (2318 years) found in ∆14C (‰) record and in the eccentricity function of the
barycenter of the planets relative to the Sun. [B] Ordered and disordered orbits of the barycenter of the planets
relative to the Sun. [C and D] The Hallstatt oscillation found in∆14C (‰) record and in the apocycles and pericycles
of the orbits of the center of mass of the planets relative to the Sun. (cf. Scafetta et al., 2016).

radiative and the convective zone, which is very close
to the tachocline. This would translate both in tidal
torques and in the onset of g-waves moving throughout
the radiative region. A similar mechanism should also
take place in late-type stars like the Sun (Goodman and
Dickson, 1998).
Abreu et al. (2012) found an excellent agreement

between the long-term solar cycles and the periodici-
ties in the planetary tidal torques. These authors as-
sumed that the solar interior is characterized by a non-
spherical tachocline. Under such a condition, the plane-
tary gravitational forces exert a torque on the tachocline
itself that would then vary with the distribution of the
planets around the Sun. These authors showed that the
torque function is characterized by some specific plan-
etary frequencies that match those observed in cosmo-
genic radionuclide proxies of solar activity. The authors
highlighted spectral coherence at the following periods:
88, 104, 150, 208 and 506 years. The first four periods
were discussed above using alternative planetary func-
tions; the last period could be a harmonic of the millen-
nial solar cycle also discussed above and found in the
same solar record (Scafetta, 2012a, 2014b).
Abreu et al. (2012) observed that the tachocline ap-

proximately coincides with the layer at the bottom of the
convection zone where the storage and amplification of
the magnetic flux tubes occur. These are the flux tubes
that eventually erupt at the solar photosphere to form
active regions. The tachocline layer is in a critical state
because it is very sensitive to small perturbations be-
ing between the radiative zone characterized by stable
stratification (δ < 0) and the convective zone character-
ized by unstable stratification (δ > 0). The proposed

hypothesis is that the planetary tides could influence
the magnetic storage capacity of the tachocline region
by modifying its entropy stratification and the supera-
diabaticity parameter δ, thereby altering the maximum
field strength of the magnetic flux tubes that regulate
the solar dynamo.
However, Abreu et al. (2012) also acknowledged that

their hypothesis could not explain how the tiny tidal
modification of the entropy stratification could produce
an observable effect although they conjectured the pres-
ence of a resonance mediated by gravity waves.
The planetary tidal influence on the solar dynamo

has been rather controversial because the tidal accel-
erations at the tachocline layer are about 1000 times
smaller than the accelerations of the convective cells
(Jager and Versteegh, 2005). Scafetta (2012b) calcu-
lated that the gravitational tidal amplitudes produced
by all the planets on the solar chromosphere are of the
order of one millimeter or smaller (see Table 7). More
recently, Charbonneau (2022) critiqued Stefani et al.
(2019, 2021) by observing that also the planetary tidal
forcings of Jupiter and Venus could only exert a “home-
opathic” influence on the solar tachocline concluding
that they should be unable to synchronize the dynamo.
Charbonneau (2022) also observed that even angular
momentum transport by convective overshoot into the
tachocline would be inefficient and concluded that syn-
chronization could only be readily achieved in presence
of high forcing amplitudes, stressing the critical need
for a powerful amplification mechanism.
While it is certainly true that the precise underly-

ing mechanism is not completely understood, the rough
energetic estimate that 1 mm tidal height corresponds
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mass semi-major perihelion aphelion mean tidal diff. tidal Sun rot.
(kg) axis (m) (m) (m) elong. (m) elong. (m) (days)

Me 3.30E23 5.79E10 4.60E10 6.98E10 3.0E-4 (7.5E-4) 4.3E-4 (1.1E-3) 37.92
Ve 4.87E24 1.08E11 1.08E11 1.09E11 6.8E-4 (1.7E-3) 2.6E-5 (6.6E-5) 30.04
Ea 5.97E24 1.50E11 1.47E11 1.52E11 3.2E-4 (7.9E-4) 3.2E-5 (7.9E-5) 28.57
Ma 6.42E23 2.28E11 2.07E11 2.49E11 9.6E-6 (2.4E-5) 5.5E-6 (1.4E-5) 27.56
Ju 1.90E27 7.79E11 7.41E11 8.17E11 7.1E-4 (1.8E-3) 2.1E-4 (5.2E-4) 26.66
Sa 5.69E26 1.43E12 1.35E12 1.51E12 3.4E-5 (8.5E-5) 1.2E-5 (2.9E-5) 26.57
Ur 8.68E25 2.88E12 2.75E12 3.00E12 6.4E-7 (1.6E-6) 1.7E-7 (4.3E-7) 26.52
Ne 1.02E26 4.50E12 4.45E12 4.55E12 2.0E-7 (5.0E-7) 1.3E-8 (3.3E-8) 26.51

Table 7: Mean tidal elongations at the solar surface produced by all planets. “Diff. tidal elongation” is the differ-
ence between the tides at perihelion and aphelion. The 26.5-day mean solar rotation as seenby the planets. Tidal
elongations are calculated for Love-number 3/2 and 15/4, the latter being inside parentheses. (cf. Scafetta, 2012b).

to 1 m/s velocity at the tachocline level might still en-
tail sufficient capacity for synchronization by changing
the (sensitive) field storage capacity (Abreu et al., 2012)
or by synchronizing that part of α that is connected
with the Tayler instability or by the onset of magneto-
Rossby waves at the tachocline (Dikpati et al., 2017; Za-
qarashvili, 2018). In all cases, it could be possible that
only a few high-frequency planetary forcing (e.g. the
11.07-year Venus-Earth-Jupiter tidal model) are able to
efficiently synchronize the solar dynamo (Stefani et al.,
2016; Stefani, 2018; Stefani et al., 2019). At the same
time, additional and longer solar cycles could emerge
when some feature of the dynamo is also modulated by
the angular momentum exchange associated with the
solar wobbling (Stefani et al., 2021). Finally, Albert et
al. (2021) proposed that stochastic resonance could ex-
plain the multi-secular variability of the Schwabe cycle
by letting the dynamo switch between two distinct oper-
ating modes as the solution moves back and forth from
the attraction basin of one to the other.
Alternatively, the problem of the tidal “homeopathic”

influence on the tachocline could be solved by observ-
ing that tides could play some more observable role in
the large solar corona where the solar wind originates,
or in the wind itself at larger distances from the Sun
where the tides are stronger, or even in the solar core
where they could actually trigger a powerful response
from nuclear fusion processes. Let us now discuss the
latter hypothesis.

10.4 A possible solar amplification of
the planetary tidal forcing

A possible amplification mechanism of the effects of the
tidal forcing was introduced byWolff and Patrone (2010)
and Scafetta (2012b).
Wolff and Patrone (2010) proposed that tidal forc-

ing could act inside the solar core inducing waves in
the plasma by mixing the material and carrying fresh
fuel to the deeper and hotter regions. This mechanism
would make solar-type stars with a planetary system
slightly brighter because their fuel would burn more
quickly.

Scafetta (2012b) further developed this approach and
introduced a physical mechanism inspired by the mass-
luminosity relation of main-sequence stars. The basic
idea is that the luminosity of the core of the Sun can be
written as

L(t) ≈ L� +A · Ω̇tidal(t), (47)

where L� is the baseline luminosity of the star with-
out planets and ∆Ltidal(t) = A · Ω̇tidal(t) is the small
luminosity increase induced by planetary tides inside
the Sun. Ω̇tidal(t) is the rate of the gravitational tidal
energy which is continuously dissipated in the core and
A is the amplification factor related to the triggered lu-
minosity production via H-burning.
To calculate the magnitude of the amplification fac-

tor A we start by considering the Hertzsprung-Russell
mass-luminosity relation, which establishes that, if the
mass of a star increases, its luminosity L increases as
well. In the case of a G-type main-sequence star, with
luminosity L and mass M = M� + ∆M , the mass-
luminosity relation approximately gives

L

L�
≈
(
M

M�

)4

≈ 1 +
4∆M

M�
, (48)

where L� is the solar luminosity and M� is the mass
of the Sun (Duric, 2004). By relating the luminosity
of a star to its mass, the Hertzsprung-Russell relation
suggests a link between the luminosity and the gravita-
tional power continuously dissipated inside the star.
The total solar luminosity is

L� = 4π(1AU)2 × TSI = 3.827 · 1026 W , (49)

where 1 AU = 1.496 · 1011 m is the average Sun-Earth
distance, and TSI is the total solar irradiance 1360.94
W/m2 at 1 AU. Every second, the core of the Sun trans-
forms into luminosity a certain amount of mass accord-
ing to the Einstein equation E = mc2. If dL(r) is the lu-
minosity produced inside the shell between r and r+ dr
(Bahcall et al., 2001, 2005), the mass transformed into
light every second in the shell is
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dṁ(r)

dr
=

1

c2
dL(r)

dr
, (50)

where c = 2.998 · 108 m/s is the speed of the light and r
is the distance from the center of the Sun.
The transformed material can be associated with a

correspondent loss of gravitational energy of the star
per time unit U̇�, which can be calculated using Eq. 50
as

U̇� =
1

2
G

∫ RS

0

m�(r)
dṁ(r)

dr

1

r
dr (51)

=
1

2

G

c2

∫ RS

0

m�(r)
dL(r)

dr

1

r
dr = 3.6 · 1020 W

where the initial factor 1/2 is due to the virial theorem,
m�(r) is the solar mass within the radius r ≤ RS and
L(r) is the luminosity profile function derived by the
standard solar model (Bahcall et al., 2001, 2005).
The gravitational forces will do the work necessary to

compensate for such a loss of energy to restore the con-
ditions for the H-burning. In fact, the solar luminosity
would decrease if the Sun’s gravity did not fill the vac-
uum created by the H-burning, which reduces the num-
ber of particles by four (4H → 1He). At the same time,
the nucleus of He slowly sinks releasing additional po-
tential energy. All this corresponds to a gravitational
work in the core per time unit, Ω̇�, that is associated
with light production.
The basic analogymade by Scafetta (2012b) is that Ω̇�

should be of the same order of magnitude as the rate of
the gravitational energy loss due toH-fusion (Ω̇� ≈ U̇�).
Moreover, the energy produced by the dissipation of the
tidal forces in the core should be indistinguishable from
the energy produced by the other gravitational forces in
the Sun. Thus, it is as if tides added some gravitational
power that becomes Ω̇� + Ω̇tidal.
For small perturbations, since light production is di-

rectly related both to the solar mass and to the gravita-
tional power dissipated inside the core, Scafetta (2012b)
assumed the equivalence

∆M

M�
≡ Ω̇tidal

Ω̇�
, (52)

where Ω̇tidal is the tidal perturbing power dissipated in-
side the Sun and Ω̇� ≡ U̇� is the rate of the gravita-
tional energy lost by the Sun through H-burning. Thus,
from Eqs. 47 and 48 we get

L(t) ≈ L� +
4L�

Ω̇�
Ω̇tidal(t) = L� +A · Ω̇tidal(t), (53)

where the amplification factor is

A = 4
L�

Ω̇�
≈ 4

L�

U̇�
≈ 4.25 · 106. (54)

Eq. 54 means that any little amount of gravitational
power dissipated in the core (like that induced by plane-
tary tidal forcing) could be amplified by a factor of the or-
der of onemillion by nuclear fusion. This could be equiv-
alent to having gravitational tidal amplitudes amplified
from 1 mm to 1 kilometer at the tachocline. This am-
plification could solve the problem of the “homeopathic”
gravitational tidal energy contribution highlighted by
Charbonneau (2022).
By using such a large amplification factor the es-

timated gravitational power Ω̇tidal dissipated inside
the solar core, Scafetta (2012b) calculated the tidally-
induced TSI produced by each of the planets (Figure 9A
and B), as well as that of all the planets together (Fig-
ure 9C). The sequence of the relative tidal relevance of
the planets is Jupiter, Venus, Earth, Mercury, Saturn,
Mars, Uranus and Neptune. The mean enhancement
of their overall tidally-induced TSI is of the order of 0.3-
0.8W/m2, depending on the specific Love number of the
tides (see Figure 9C). However, on shorter time scales
the tides could produce TSI fluctuations up to 0.6-1.6
W/m2 in absence of dampening mechanisms. In partic-
ular, on a decadal time scale, the TSI fluctuations due to
Jupiter and Saturn could reach amplitudes of 0.08-0.20
W/m2 (see the black curve in Figure 9C).
If the luminosity flux reaching the tachocline from

the radiative zone is modulated by the contribution of
tidally-induced luminosity oscillations with a TSI am-
plitude of the order of 0.01-0.10W/m2, the perturbation
could be sufficiently energetic to tune the solar dynamo
with the planetary frequencies. The dynamo would
then further amplify the luminosity signal received at
the tachocline up to ∼ 1 W/m2 amplitudes as observed
in TSI cycles (Willson and Mordvinov, 2003).
Figure 9D compares the periodograms of the sunspot

number record and of the planetary luminosity signal
shown in Figure 9C. The two side frequency peaks at
about 10 years (J/S-spring tide) and 11.86 years (J-
tide) perfectly coincide in the two spectral analyses.
The central frequency peak at about 10.87 years shown
only by sunspot numbers could be directly generated by
the solar dynamo excited by the two tidal frequencies
(Scafetta, 2012a) or other mechanisms connected with
the dynamo as discussed above.
An obvious objection to the above approach is that the

Kelvin-Helmholtz time-scale (Mitalas and Sills, 1992;
Stix, 2003) predicts that the light journey from the core
to the convective zone requires 104 to 108 years. There-
fore, the luminosity fluctuations produced inside the
core could be hardly detectable because they would be
smeared out before reaching the convective zone. At
most, there could exist only a slightly enhanced solar lu-
minosity related to the overall tidally-induced TSImean
enhancement of the order of 0.3-0.8 W/m2 as shown in
Figure 9C.
However, several different mechanisms may be at

work. In fact, the harmonic tidal forcing acts simulta-
neously throughout the core and in the radiative zone

24



Figure 9: [A-B] Theoretical TSI enhancement induced by the tides of each planet on the Sun obtained using Scafetta
(2012b) amplification hypothesis; the Love numbers are 3/2 (left axis) and 15/4 (right axis). [C] The same as produced
by the tides of all the planets. [D] Lomb-periodogram spectral analysis of the sunspot number record (red) and of
the tidal function (black) produced by all the planets.

, and simultaneously produces everywhere a synchro-
nized energy oscillation that can be amplified in the core
as discussed above. This would give rise to modulated
seismic waves (g and p-mode oscillations) that can prop-
agate from the inner core up to the tachocline region in
a few hours because the sound speed inside the Sun is a
few hundred kilometers per second (Hartlep and Man-
sour, 2005; Ahuir et al., 2021; Barker andOgilvie, 2010).
These waves might also couple with the g-waves pro-
duced in the tachocline (Goodman and Dickson, 1998)
producing a in the tachocline region sufficiently strong
to synchronize the solar dynamo with the planetary
tidal frequencies.

11 Conclusion
Many empirical evidences suggest that planetary sys-
tems can self-organize in synchronized structures al-
though some of the physical mechanisms involved are
still debated.
We have shown that the high synchronization of our

own planetary system is nicely revealed by the fact
that the ratios of the orbital radii of adjacent planets,
when raised to the 2/3rd power, express the simple ra-
tios found in harmonic musical consonances while those
of the mirrored ones follow the simple, elegant, and
highly precise scaling-mirror symmetry Eq. 1 (Bank
and Scafetta, 2022).
The solar system is made of synchronized coupled os-

cillators because it is characterized by a set of frequen-
cies that are linked to each other by the harmonic Eq. 3,
which are easily detected in the solar wobbling. Thus, it
is then reasonable to hypothesize that the solar activity
could be also tuned to planetary frequencies.
We corroborated this hypothesis by reviewing the

many planetary harmonics and orbital invariant in-
equalities that characterize the planetary motions and
observing that often their frequencies correspond to
those of solar variability.
It may be objected that, since the identified plane-

tary frequencies are so numerous, it could be easy to
occasionally find that some of them roughly correspond
to those of the solar cycles. However, the fact is that
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the planetary frequencies of the solar system, from the
monthly to the millennial time scales, are not randomly
distributed but tend to cluster around some specific val-
ues that quite well match those of the main solar activ-
ity.
Thus, it is rather unlikely that the results shown

in Figures 3-7 are just occasional. In some cases, our
proposed planetary models have even been able to pre-
dict the time-phase of the solar oscillations like that of
the Schwabe 11-year sunspot cycle throughout the last
three centuries, as well as those of the secular and mil-
lennial modulations throughout the Holocene. The two
main planetary models that could explain the Schwabe
11-year cycle and its secular and millennial variation
involve the planets Venus, Earth, Jupiter and Saturn,
as it was initially suggested by Wolf (1859). We fur-
ther suggest that the Venus-Earth-Jupiter model and
the Jupiter-Saturn model could be working complemen-
tary to each other.
The alternative hypothesis that the solar activity is

regulated by an unforced internal dynamics alone (i.e.
by an externally unperturbed solar dynamo) has never
been able to reproduce the variety of the observed os-
cillations. In fact, standard MHD dynamo models are
not self-consistent and do not directly explain the well-
known 11-year solar cycle nor they are able to predict
its timing without assuming a number of calibrated pa-
rameters (Jiang et al., 2007; Tobias, 2002).
There have been several objections to a planetary the-

ory of solar variability. For example, Smythe and Eddy
(1977) claimed that planetary cycles and conjunctions
could not predict the timing of grand solar minima, like
the Maunder Minimum of the 17th century. However,
Scafetta (2012a) developed a solar-planetarymodel able
to predict all the grand solar maxima andminima of the
last millennium (Figure 5).
Other authors reasonably claimed that planetary

gravitational tides are too weak to modulate solar ac-
tivity (Charbonneau, 2002; Jager and Versteegh, 2005;
Charbonneau, 2022); yet,several empirical evidences
support the importance of their role (Abreu et al., 2012;
Scafetta, 2012b; Stefani et al., 2016, 2019; Wolff and Pa-
trone, 2010). Stefani et al. (2016, 2021) proposed that
the Sun could be at least synchronized by the tides of
Venus, Earth and Jupiter producing an 11.07-year cy-
cle that reasonably fits the Schwabe cycle. Longer cy-
cles could be produced by a dynamo excited by angular
momentum transfer from Jupiter and Saturn. Instead,
Scafetta (2012b) proposed that, in the solar core, the ef-
fects of the weak tidal forces could be amplified one mil-
lion times or more due to an induced increase in the H-
burning, thus providing a sufficiently strong forcing to
synchronize and modulate the solar dynamo with plan-
etary harmonics at multiple time scales.
Objections to the latter hypothesis, based on the slow

light propagation inside the radiative zone according
to the Kelvin–Helmholtz timescale (Mitalas and Sills,
1992; Stix, 2003), could be probably solved. In fact, tidal

forces are believed to favor the onset of g-waves mov-
ing back and forth throughout the radiative region of
the Sun (Ahuir et al., 2021; Barker and Ogilvie, 2010).
Thus, g-waves themselves could be amplified and mod-
ulated in the core by the tidally induced H-burning en-
hancement (Scafetta, 2012b). Then, both tidal torques
and g-waves could cyclically affect the tachocline region
at the bottom of the convective zone and synchronize the
solar dynamo.
Alternatively, planetary alignments can also modify

the large-scale electromagnetic and gravitational struc-
ture of the planetary system altering the space weather
in the solar system. For example, in coincidence of plan-
etary alignments, an increase of solar flares has been
observed (Hung, 2007; Bertolucci et al., 2017; Petrakou,
2021). The solar wobbling, which reflects the motion of
the barycenter of the planets, changing from more reg-
ular to more chaotic trajectories, correlates well with
some long climate cycles like the Bray-Hallstatt cycle
(2100-2500 years) (Charvátová, 2000; Charvátová and
Hejda, 2014; Scafetta et al., 2016). Finally, Scafetta et
al. (2020) showed that the infallingmeteorite flux on the
Earth presents a 60-year oscillation coherent with the
variation of the eccentricity of Jupiter’s orbit induced
by Saturn. The falling flux of meteorites and interplan-
etary dust would then contribute to modulate cloud for-
mation.
In conclusion, much empirical evidence suggests that

planetary oscillations should be able tomodulate the so-
lar activity and even the Earth’s climate, although sev-
eral open physical issues remain open. These results
stress the importance of identifying the relevant plane-
tary harmonics, the solar activity cycles and the climate
oscillations as phenomena that, in many cases, are in-
terconnected. This approach could be useful to predict
both solar and climate variability using harmonic con-
stituent models as it is currently done for oceanic tides.
We think that the theory of a planetary modulation of
solar activity should be further developed because no
clear alternative theory exists to date capable to explain
the observed planetary-solar interconnected periodici-
ties.
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